RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers

0 Datasets

0 Files

English
2022
Environment International
Vol 162
DOI: 10.1016/j.envint.2022.107157

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Wan‐Ying Xie
Yating Wang
Jun Yuan
+6 more

Abstract

Compost-based organic fertilizers made from animal manures may contain high levels of antibiotic resistance genes (ARGs). However, the factors affecting the abundance and profile of ARGs in organic fertilizers remain unclear. We conducted a national-wide survey in China to investigate the effect of material type and composting process on ARG abundance in commercial organic fertilizers and quantified the contributions of bacterial composition and mobile genetic elements (MGEs) to the structuring of ARGs, using quantitative PCR and Illumina sequencing of 16S rRNA gene amplicons. The tetracycline, sulfonamide, aminoglycoside and macrolide resistance genes were present at high levels in all organic fertilizers. Seven ARGs that confer resistance to clinically important antibiotics, including three β-lactam resistance genes, three quinolone resistance genes and the colistin resistance gene mcr-1, were detected in 8 - 50% the compost samples, whereas the vancomycin resistance gene vanC was not detected. Raw material type had a significant (p < 0.001) effect on the ARG abundance, with composts made from animal feces except some cattle feces generally having higher loads of ARGs than those from non-animal raw materials. Composting process type showed no significant (p > 0.05) effect on ARG abundance in the organic fertilizers. MGEs exerted a greater influence on ARG composition than bacterial community, suggesting a strong mobility of ARGs in the organic fertilizers. Our study highlights the need to manage the risk of ARG dissemination from agricultural wastes.

How to cite this publication

Wan‐Ying Xie, Yating Wang, Jun Yuan, Wen-Dan Hong, Guoqing Niu, Xi Zou, Xinping Yang, Qirong Shen, Fang-jie Zhao (2022). Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers. Environment International, 162, pp. 107157-107157, DOI: 10.1016/j.envint.2022.107157.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

9

Datasets

0

Total Files

0

Language

English

Journal

Environment International

DOI

10.1016/j.envint.2022.107157

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access