0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCompost-based organic fertilizers made from animal manures may contain high levels of antibiotic resistance genes (ARGs). However, the factors affecting the abundance and profile of ARGs in organic fertilizers remain unclear. We conducted a national-wide survey in China to investigate the effect of material type and composting process on ARG abundance in commercial organic fertilizers and quantified the contributions of bacterial composition and mobile genetic elements (MGEs) to the structuring of ARGs, using quantitative PCR and Illumina sequencing of 16S rRNA gene amplicons. The tetracycline, sulfonamide, aminoglycoside and macrolide resistance genes were present at high levels in all organic fertilizers. Seven ARGs that confer resistance to clinically important antibiotics, including three β-lactam resistance genes, three quinolone resistance genes and the colistin resistance gene mcr-1, were detected in 8 - 50% the compost samples, whereas the vancomycin resistance gene vanC was not detected. Raw material type had a significant (p < 0.001) effect on the ARG abundance, with composts made from animal feces except some cattle feces generally having higher loads of ARGs than those from non-animal raw materials. Composting process type showed no significant (p > 0.05) effect on ARG abundance in the organic fertilizers. MGEs exerted a greater influence on ARG composition than bacterial community, suggesting a strong mobility of ARGs in the organic fertilizers. Our study highlights the need to manage the risk of ARG dissemination from agricultural wastes.
Wan‐Ying Xie, Yating Wang, Jun Yuan, Wen-Dan Hong, Guoqing Niu, Xi Zou, Xinping Yang, Qirong Shen, Fang-jie Zhao (2022). Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers. Environment International, 162, pp. 107157-107157, DOI: 10.1016/j.envint.2022.107157.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Environment International
DOI
10.1016/j.envint.2022.107157
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access