0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessKainate-type glutamate ionotropic receptors (KAR) mediate either depression or potentiation of inhibitory transmission. The mechanisms underlying the depressant effect of KAR agonists have been controversial. Under dual patch-clamp recording techniques in synaptically coupled pairs of CA1 interneurons and pyramidal neurons in hippocampal slices, micromolar concentrations of KAR agonists, kainic acid (KA, 10 microM) and ATPA (10 microM), induced inactivation of action potentials (APs) in 58 and 50% of presynaptic interneurons, respectively. Inactivation of interneuronal APs might have significantly contributed to KA-induced decreases in evoked inhibitory postsynaptic currents (eIPSCs) that are obtained by stimulating the stratum radiatum. With controlled interneuronal APs, KAR agonists induced a decrease in the potency (mean amplitude of successful events) and mean amplitude (including failures) of unitary inhibitory postsynaptic currents (uIPSCs) without significantly changing the success rate (P(s)) at perisomatic high-P(s) synapses. In contrast, KAR agonists induced a decrease in both the P(s) and potency of uIPSCs at dendritic high-P(s) synapses. KAR agonists induced an inhibition of GABA(A) currents by activating postsynaptic KARs in pyramidal neurons; this was more prominent at dendrites than at soma. Both the exogenous GABA-induced current and the amplitude of miniature IPSCs (mIPSCs) were attenuated by KAR agonists. Thus the postsynaptic KAR-mediated inhibition of GABA(A) currents may contribute to the KAR agonist-induced decrease in the potency of uIPSCs and KA-induced disinhibition.
Ning Kang, Li Jiang, Wei He, Jun Xu, Maiken Nedergaard, Jian Jian Kang (2004). Presynaptic Inactivation of Action Potentials and Postsynaptic Inhibition of GABA<sub>A</sub> Currents Contribute to KA-Induced Disinhibition in CA1 Pyramidal Neurons. , 92(2), DOI: https://doi.org/10.1152/jn.01231.2003.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1152/jn.01231.2003
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access