0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessExtensive efforts have been devoted in both the engineering and scientific domains to seek new designs and processing techniques capable of making stronger and tougher materials. One such method for enhancing such damage-tolerance in metallic alloys is a surface nano-crystallization technology that involves the use of hundreds of small hard balls which are vibrated using high-power ultrasound so that they impact onto the surface of a material at high speed (termed Surface Mechanical Attrition Treatment or SMAT). However, few studies have been devoted to the precise underlying mechanical mechanisms associated with this technology and the effect of processing parameters. As SMAT is dynamic plastic deformation process, here we use random impact deformation as a means to investigate the relationship between impact deformation and the parameters involved in the processing, specifically ball size, impact velocity, ball density and kinetic energy. Using analytical and numerical solutions, we examine the size of the indents and the depths of the associated plastic zones induced by random impacts, with results verified by experiment in austenitic stainless steels. In addition, global random impact and local impact frequency models are developed to analyze the statistical characteristics of random impact coverage, together with a description of the effect of random multiple impacts, which are more reflective of SMAT. We believe that these models will serve as a necessary foundation for further, and more energy-efficient, development of such surface nano-crystalline processing technologies for the strengthening of metallic materials.
Shan Cecilia Cao, Xiaochun Zhang, Jian Lü, Yongli Wang, San‐Qiang Shi, Robert O. Ritchie (2019). Predicting surface deformation during mechanical attrition of metallic alloys. npj Computational Materials, 5(1), DOI: 10.1038/s41524-019-0171-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
npj Computational Materials
DOI
10.1038/s41524-019-0171-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access