RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Predicting surface deformation during mechanical attrition of metallic alloys

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Predicting surface deformation during mechanical attrition of metallic alloys

0 Datasets

0 Files

English
2019
npj Computational Materials
Vol 5 (1)
DOI: 10.1038/s41524-019-0171-6

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
Shan Cecilia Cao
Xiaochun Zhang
Jian Lü
+3 more

Abstract

Extensive efforts have been devoted in both the engineering and scientific domains to seek new designs and processing techniques capable of making stronger and tougher materials. One such method for enhancing such damage-tolerance in metallic alloys is a surface nano-crystallization technology that involves the use of hundreds of small hard balls which are vibrated using high-power ultrasound so that they impact onto the surface of a material at high speed (termed Surface Mechanical Attrition Treatment or SMAT). However, few studies have been devoted to the precise underlying mechanical mechanisms associated with this technology and the effect of processing parameters. As SMAT is dynamic plastic deformation process, here we use random impact deformation as a means to investigate the relationship between impact deformation and the parameters involved in the processing, specifically ball size, impact velocity, ball density and kinetic energy. Using analytical and numerical solutions, we examine the size of the indents and the depths of the associated plastic zones induced by random impacts, with results verified by experiment in austenitic stainless steels. In addition, global random impact and local impact frequency models are developed to analyze the statistical characteristics of random impact coverage, together with a description of the effect of random multiple impacts, which are more reflective of SMAT. We believe that these models will serve as a necessary foundation for further, and more energy-efficient, development of such surface nano-crystalline processing technologies for the strengthening of metallic materials.

How to cite this publication

Shan Cecilia Cao, Xiaochun Zhang, Jian Lü, Yongli Wang, San‐Qiang Shi, Robert O. Ritchie (2019). Predicting surface deformation during mechanical attrition of metallic alloys. npj Computational Materials, 5(1), DOI: 10.1038/s41524-019-0171-6.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

npj Computational Materials

DOI

10.1038/s41524-019-0171-6

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access