0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article investigates uniformly predefined-time bounded consensus of leader-following multiagent systems (MASs) with unknown system nonlinearity and external disturbance via distributed adaptive fuzzy control. First, uniformly predefined-time-bounded stability is analyzed and a sufficient condition is derived for the system to achieve semiglobally (globally) uniformly predefined-time-bounded consensus. Therein, the settling time is independent of initial conditions and can be defined in advance. Then, for first-order MASs, distributed adaptive fuzzy controllers are designed by combining neighboring consensus errors to drive all following agents to globally track the leader's state within predefined time. For second-order MASs, by formulating filtered errors, the consensus errors between following agents and the leader are shown to be bounded if the filtered errors are bounded. Furthermore, with the distributed controllers designed based on filtered errors, second-order MASs achieve semiglobally uniformly predefined-time-bounded leader-following consensus. Finally, two numerical examples are simulated, including: 1) a first-order leader-following MAS and 2) a second-order Lagrangian system consisting of single-link manipulators, to demonstrate the performance of the proposed controllers.
Bing Mao, Xiaoqun Wu, Jinhu Lü, Guanrong Chen (2022). Predefined-Time Bounded Consensus of Multiagent Systems With Unknown Nonlinearity via Distributed Adaptive Fuzzy Control. IEEE Transactions on Cybernetics, 53(4), pp. 2622-2635, DOI: 10.1109/tcyb.2022.3163755.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2022.3163755
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access