RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations

0 Datasets

0 Files

en
2020
Vol 378 (2183)
Vol. 378
DOI: 10.1098/rsta.2019.0320

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Laurence Jones
Laurence Jones

UK Centre for Ecology & Hydrology

Verified
Eiko Nemitz
Massimo Vieno
Edward Carnell
+13 more

Abstract

The potential to capture additional air pollutants by introducing more vegetation or changing existing short vegetation to woodland on first sight provides an attractive route for lowering urban pollution. Here, an atmospheric chemistry and transport model was run with a range of landcover scenarios to quantify pollutant removal by the existing total UK vegetation as well as the UK urban vegetation and to quantify the effect of large-scale urban tree planting on urban air pollution. UK vegetation as a whole reduces area (population)-weighted concentrations significantly, by 10% (9%) for PM 2.5 , 30% (22%) for SO 2 , 24% (19%) for NH 3 and 15% (13%) for O 3 , compared with a desert scenario. By contrast, urban vegetation reduces average urban PM 2.5 by only approximately 1%. Even large-scale conversion of half of existing open urban greenspace to forest would lower urban PM 2.5 by only another 1%, suggesting that the effect on air quality needs to be considered in the context of the wider benefits of urban tree planting, e.g. on physical and mental health. The net benefits of UK vegetation for NO 2 are small, and urban tree planting is even forecast to increase urban NO 2 and NO x concentrations, due to the chemical interaction with changes in BVOC emissions and O 3 , but the details depend on tree species selection. By extrapolation, green infrastructure projects focusing on non-greenspace (roadside trees, green walls, roof-top gardens) would have to be implemented at very large scales to match this effect. Downscaling of the results to micro-interventions solely aimed at pollutant removal suggests that their impact is too limited for their cost–benefit analysis to compare favourably with emission abatement measures. Urban vegetation planting is less effective for lowering pollution than measures to reduce emissions at source. The results highlight interactions that cannot be captured if benefits are quantified via deposition models using prescribed concentrations, and emission damage costs. This article is part of a discussion meeting issue ‘Air quality, past present and future’.

How to cite this publication

Eiko Nemitz, Massimo Vieno, Edward Carnell, Alice Fitch, Claudia Steadman, Philip Cryle, Mike Holland, Richard Morton, Jane Hall, Gina Mills, Felicity Hayes, Ian A. Dickie, David Carruthers, D. Fowler, Stefan Reis, Laurence Jones (2020). Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. , 378(2183), DOI: https://doi.org/10.1098/rsta.2019.0320.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

16

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1098/rsta.2019.0320

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access