0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPriming effects of soil organic matter decomposition are critical to determine carbon budget and turnover in soil. Yet, the overall direction and intensity of soil priming remains under debate. A second‐order meta‐analysis was performed with 9296‐paired observations from 363 primary studies to determine the intensity and general direction of priming effects depending on the compound type, nutrient availability, and ecosystem type. We found that fresh carbon inputs induced positive priming effects (+37%) in 97% of paired observations. Labile compounds induced larger priming effects (+73%) than complex organic compounds (+33%). Nutrients (e.g., N, P) added with organic compounds reduced the intensity of priming effects compared to compounds without N and P, reflecting “nutrient mining from soil organic matter” as one of the main mechanisms of priming effects. Notably, tundra, lakebeds, wetlands, and volcanic soils showed much larger priming effects (+125%) compared to soils under forests, croplands, and grasslands (+24…+32%). Our findings highlight that positive priming effects are predominant in most soils at a global scale. Optimizing strategies to incorporate fresh organic matter and nutrients is urgently needed to offset the priming‐induced accelerated organic carbon turnover and possible losses.
Shengwen Xu, Manuel Delgado‐Baquerizo, Yakov Kuzyakov, Wu Yan, Lihu Liu, Yuyi Yang, Yaying Li, Yongxiang Yu, Biao Zhu, Huaiying Yao (2024). Positive soil priming effects are the rule at a global scale. Global Change Biology, 30(9), DOI: 10.1111/gcb.17502.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Global Change Biology
DOI
10.1111/gcb.17502
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access