0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPlasmon refers to the coherent oscillation of all conduction-band electrons in a nanostructure made of a metal or a heavily doped semiconductor. Upon excitation, the plasmon can decay through different channels, including nonradiative Landau damping for the generation of plasmon-induced energetic carriers, the so-called hot electrons and holes. The energetic carriers can be collected by transferring to a functional material situated next to the plasmonic component in a hybrid configuration to facilitate a range of photochemical processes for energy or chemical conversion. This article centers on the recent advancement in generating and utilizing plasmon-induced hot electrons in a rich variety of hybrid nanostructures. After a brief introduction to the fundamentals of hot-electron generation and decay in plasmonic nanocrystals, we extensively discuss how to collect the hot electrons with various types of functional materials. With a focus on plasmonic nanocrystals made of metals, we also briefly examine those based upon heavily doped semiconductors. Finally, we illustrate how site-selected growth can be leveraged for the rational fabrication of different types of hybrid nanostructures, with an emphasis on the parameters that can be experimentally controlled to tailor the properties for various applications.
Li Zhou, Qijia Huang, Younan Xia (2024). Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. , 124(14), DOI: https://doi.org/10.1021/acs.chemrev.4c00165.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.chemrev.4c00165
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access