0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThinning is a widely-used management practice to reduce tree competition and improve wood production and quality in forest plantations. Thinning affects the soil ecosystem by changing the microclimate and plant growth, as well as litter inputs above and belowground, with all the resulting consequences for microbial communities and functions. Although many case studies have been carried out, a comprehensive understanding of the thinning effects on soil properties and microbial communities and functions in plantations remains to be explored. In this study, a meta-analysis was performed on 533 paired observations based on 90 peer-reviewed articles to evaluate the general responses of soil (mainly 0–20 cm depth) physicochemical properties, microbial biomass and community structure, and enzyme activities to thinning. Results showed that thinning increased soil temperature (13 %), moisture (8.0 %), electric conductivity (13 %), and the contents of total nitrogen (TN, 4.1 %), dissolved organic carbon (DOC, 9.7 %), nitrate N (NO3 −–N, 27 %) and available phosphorous (22 %). For microbial properties, thinning decreased the fungi to bacteria ratio (F:B, −28 %) and the gram-positive bacteria to gram-negative bacteria ratio (G+:G−, −12 %), while increased microbial biomass C (7.1 %), microbial respiration (13 %), and nutrient-cycle related enzyme activities, including phenol oxidase (14 %), cellobiohydrolase (21 %), urease (10 %), and acid phosphatase (9 %). In particular, moderate thinning (30–60 % intensity) has higher conservation benefits for soil C and nutrients than light and heavy intensity, thus being recommended as the optimal thinning activity. This meta-analysis suggests that thinning consistently altered soil properties, shifted microbial community compositions from K- to-r strategist dominance, and stimulated microbial activities. These results are essential for optimizing plantation thinning management and provide evidence for applying the macro-ecology theory to ecosystem disturbance in soil microbial ecology.
Xiulan Zhang, Liang Chen, Ying Wang, Peiting Jiang, Yanting Hu, Shuai Ouyang, Huili Wu, Pifeng Lei, Yakov Kuzyakov, Wenhua Xiang (2023). Plantations thinning: A meta-analysis of consequences for soil properties and microbial functions. The Science of The Total Environment, 877, pp. 162894-162894, DOI: 10.1016/j.scitotenv.2023.162894.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2023.162894
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access