0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessComparing the belowground allocation of assimilated carbon (C) to roots and mycorrhizal fungi across biomes can reveal specific plant nutrient acquisition strategies in ecosystems and allows to predict consequences of environmental changes. Three natural ecosystems (arid shrubland, coastal matorral, humid-temperate forest) distinct in annual precipitation and vegetation cover and compositions were selected to conduct a 13CO2 pulse labeling of natural woody vegetation to chase the allocation of assimilated C to arbuscular mycorrhizal (AM) fungi and fine roots. Further, nitrogen (N) and phosphorus (P) availability, root traits, root colonization, and the extraradical AM fungal mycelium (PLFA and NLFA 16:1ω5c) were analyzed to evaluate the efficiency of nutrient acquisition strategies. AM fungal colonization decreased with increasing aridity by up to 55% intraradical and by up to 90% extraradical. High root tissue densities – indicating longevity of roots – and low specific root lengths – indicating a low nutrient uptake capacity – pointed to a slow and resource conservative acquisition strategy of plants in the arid shrubland. Plants in the matorral, on the contrary, had lower root tissue densities but higher specific root lengths and higher root N contents, pointing to a fast nutrient acquisition strategy. The expression of abundant acquisitive fine roots of plants in the matorral, however, comes at the cost of larger C investment, shown by high 13C incorporation into root tissue. High root tissue densities and greater root diameter indicated that plants in the humid-temperate forest followed a resource-conservative strategy and outsource their nutrient acquisition to AM fungi. This outsourcing provides an efficient pathway to compensate a low uptake capacity of thick and dense roots. These ecosystem-specific acquisition strategies and distinct mutualism with AM fungi across the biomes will likely affect the sensitivity of plants to abiotic and biotic stressors and, thus, ecosystem responses to future climatic and environmental changes.
Svenja Stock, Moritz Koester, Jens Boy, Roberto Godoy, Francisco Nájera, Francisco J. Matus, Carolina Merino, Khaled Abdallah, Christoph Leuschner, Sandra Spielvogel, Anna A. Gorbushina, Yakov Kuzyakov, Michaela Dippold (2021). Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. The Science of The Total Environment, 781, pp. 146748-146748, DOI: 10.1016/j.scitotenv.2021.146748.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2021.146748
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access