RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies

0 Datasets

0 Files

English
2021
The Science of The Total Environment
Vol 781
DOI: 10.1016/j.scitotenv.2021.146748

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Francisco J. Matus
Francisco J. Matus

Institution not specified

Verified
Svenja Stock
Moritz Koester
Jens Boy
+10 more

Abstract

Comparing the belowground allocation of assimilated carbon (C) to roots and mycorrhizal fungi across biomes can reveal specific plant nutrient acquisition strategies in ecosystems and allows to predict consequences of environmental changes. Three natural ecosystems (arid shrubland, coastal matorral, humid-temperate forest) distinct in annual precipitation and vegetation cover and compositions were selected to conduct a 13CO2 pulse labeling of natural woody vegetation to chase the allocation of assimilated C to arbuscular mycorrhizal (AM) fungi and fine roots. Further, nitrogen (N) and phosphorus (P) availability, root traits, root colonization, and the extraradical AM fungal mycelium (PLFA and NLFA 16:1ω5c) were analyzed to evaluate the efficiency of nutrient acquisition strategies. AM fungal colonization decreased with increasing aridity by up to 55% intraradical and by up to 90% extraradical. High root tissue densities – indicating longevity of roots – and low specific root lengths – indicating a low nutrient uptake capacity – pointed to a slow and resource conservative acquisition strategy of plants in the arid shrubland. Plants in the matorral, on the contrary, had lower root tissue densities but higher specific root lengths and higher root N contents, pointing to a fast nutrient acquisition strategy. The expression of abundant acquisitive fine roots of plants in the matorral, however, comes at the cost of larger C investment, shown by high 13C incorporation into root tissue. High root tissue densities and greater root diameter indicated that plants in the humid-temperate forest followed a resource-conservative strategy and outsource their nutrient acquisition to AM fungi. This outsourcing provides an efficient pathway to compensate a low uptake capacity of thick and dense roots. These ecosystem-specific acquisition strategies and distinct mutualism with AM fungi across the biomes will likely affect the sensitivity of plants to abiotic and biotic stressors and, thus, ecosystem responses to future climatic and environmental changes.

How to cite this publication

Svenja Stock, Moritz Koester, Jens Boy, Roberto Godoy, Francisco Nájera, Francisco J. Matus, Carolina Merino, Khaled Abdallah, Christoph Leuschner, Sandra Spielvogel, Anna A. Gorbushina, Yakov Kuzyakov, Michaela Dippold (2021). Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. The Science of The Total Environment, 781, pp. 146748-146748, DOI: 10.1016/j.scitotenv.2021.146748.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

13

Datasets

0

Total Files

0

Language

English

Journal

The Science of The Total Environment

DOI

10.1016/j.scitotenv.2021.146748

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access