0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe applications of wireless power transfer technology to wireless communications can help build a wireless powered communication network (WPCN) with more reliable and sustainable power supply compared to the conventional battery-powered network. However, due to the fundamental differences in wireless information and power transmissions, many important aspects of conventional battery-powered wireless communication networks need to be redesigned for efficient operations of WPCNs. In this paper, we study the placement optimization of energy and information access points in WPCNs, where the wireless devices (WDs) harvest the radio frequency energy transferred by dedicated energy nodes (ENs) in the downlink, and use the harvested energy to transmit data to information access points (APs) in the uplink. In particular, we are interested in minimizing the network deployment cost with minimum number of ENs and APs by optimizing their locations, while satisfying the energy harvesting and communication performance requirements of the WDs. Specifically, we first study the minimum-cost placement problem when the ENs and APs are separately located, where an alternating optimization method is proposed to jointly optimize the locations of ENs and APs. Then, we study the placement optimization when each pair of EN and AP is colocated and integrated as a hybrid access point, and propose an efficient algorithm to solve this problem. Simulation results show that the proposed methods can effectively reduce the network deployment cost and yet guarantee the given performance requirements, which is a key consideration in future applications of WPCNs.
Suzhi Bi, Rui Zhang (2015). Placement Optimization of Energy and Information Access Points in Wireless Powered Communication Networks. IEEE Transactions on Wireless Communications, 15(3), pp. 2351-2364, DOI: 10.1109/twc.2015.2503334.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Wireless Communications
DOI
10.1109/twc.2015.2503334
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access