RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Piezotronic Tunneling Junction Gated by Mechanical Stimuli

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Piezotronic Tunneling Junction Gated by Mechanical Stimuli

0 Datasets

0 Files

en
2019
Vol 31 (51)
Vol. 31
DOI: 10.1002/adma.201905436

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Shuhai Liu
Longfei Wang
Xiaolong Feng
+3 more

Abstract

Tunneling junction is used in many devices such as high-frequency oscillators, nonvolatile memories, and magnetic field sensors. In these devices, modulation on the barrier width and/or height is usually realized by electric field or magnetic field. Here, a new piezotronic tunneling junction (PTJ) principle, in which the quantum tunneling is controlled/tuned by externally applied mechanical stimuli, is proposed. In these metal/insulator/piezoelectric semiconductor PTJs, such as Pt/Al2 O3 /p-GaN, the height and the width of the tunneling barriers can be mechanically modulated via the piezotronic effect. The tunneling current characteristics of PTJs exhibit critical behavior as a function of external mechanical stimuli, which results in high sensitivity (≈5.59 mV MPa-1 ), giant switching (>105 ), and fast response (≈4.38 ms). Moreover, the mechanical controlling of tunneling transport in PTJs with various thickness of Al2 O3 is systematically investigated. The high performance observed with these metal/insulator/piezoelectric semiconductor PTJs suggest their great potential in electromechanical technology. This study not only demonstrates dynamic mechanical controlling of quantum tunneling, but also paves a way for adaptive interaction between quantum tunneling and mechanical stimuli, with potential applications in the field of ultrasensitive press sensor, human-machine interface, and artificial intelligence.

How to cite this publication

Shuhai Liu, Longfei Wang, Xiaolong Feng, Jinmei Liu, Yong Qin, Zhong Lin Wang (2019). Piezotronic Tunneling Junction Gated by Mechanical Stimuli. , 31(51), DOI: https://doi.org/10.1002/adma.201905436.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.201905436

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access