RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems

0 Datasets

0 Files

en
2020
Vol 20 (5)
Vol. 20
DOI: 10.1021/acs.nanolett.0c00733

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Qilin Hua
X. Y. Cui
Haitao Liu
+3 more

Abstract

Tactile information is efficiently captured and processed through a complex sensory system combined with mechanoreceptors, neurons, and synapses in human skin. Synapses are essential for tactile signal transmission between pre/post-neurons. However, developing an electronic device that integrates the functions of tactile information sensation and transmission remains a challenge. Here, we present a piezotronic synapse based on a single GaN microwire that can simultaneously achieve the capabilities of strain sensing and synaptic functions. The piezotronic effect in the wurtzite GaN is introduced to strengthen synaptic weight updates (e.g., 330% enhancement at a compressive stress of −0.36%) with pulse trains. A high gauge factor for strain sensing (ranging from 0 to −0.81%) of about 736 is also obtained. Remarkably, the piezotronic synapse enables the neuromorphic hardware achievement of the perception and processing of tactile information in a single micro/nanowire system, demonstrating an advance in biorealistic artificial intelligence systems.

How to cite this publication

Qilin Hua, X. Y. Cui, Haitao Liu, Caofeng Pan, Weiguo Hu, Zhong Lin Wang (2020). Piezotronic Synapse Based on a Single GaN Microwire for Artificial Sensory Systems. , 20(5), DOI: https://doi.org/10.1021/acs.nanolett.0c00733.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

6

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.nanolett.0c00733

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access