RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2016

Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli

0 Datasets

0 Files

en
2016
Vol 10 (12)
Vol. 10
DOI: 10.1021/acsnano.6b05895

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Qijun Sun
Dong Hae Ho
Yongsuk Choi
+4 more

Abstract

We report the development of a piezopotential-programmed nonvolatile memory array using a combination of ion gel-gated field-effect transistors (FETs) and piezoelectric nanogenerators (NGs). Piezopotentials produced from the NGs under external strains were able to replace the gate voltage inputs associated with the programming/erasing operation of the memory, which reduced the power consumption compared with conventional memory devices. Multilevel data storage in the memory device could be achieved by varying the external bending strain applied to the piezoelectric NGs. The resulting devices exhibited good memory performance, including a large programming/erasing current ratio that exceeded 103, multilevel data storage of 2 bits (over 4 levels), performance stability over 100 cycles, and stable data retention over 3000 s. The piezopotential-programmed multilevel nonvolatile memory device described here is important for applications in data-storable electronic skin and advanced human-robot interface operations.

How to cite this publication

Qijun Sun, Dong Hae Ho, Yongsuk Choi, Caofeng Pan, Do Hwan Kim, Zhong Lin Wang, Jeong Ho Cho (2016). Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. , 10(12), DOI: https://doi.org/10.1021/acsnano.6b05895.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsnano.6b05895

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access