Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2017

Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode

0 Datasets

0 Files

en
2017
Vol 29 (29)
Vol. 29
DOI: 10.1002/adma.201701412

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Haiyang Zou
Xiaogan Li
Wenbo Peng
+8 more

Abstract

Silicon underpins nearly all microelectronics today and will continue to do so for some decades to come. However, for silicon photonics, the indirect band gap of silicon and lack of adjustability severely limit its use in applications such as broadband photodiodes. Here, a high‐performance p‐Si/n‐ZnO broadband photodiode working in a wide wavelength range from visible to near‐infrared light with high sensitivity, fast response, and good stability is reported. The absorption of near‐infrared wavelength light is significantly enhanced due to the nanostructured/textured top surface. The general performance of the broadband photodiodes can be further improved by the piezo‐phototronic effect. The enhancement of responsivity can reach a maximum of 78% to 442 nm illumination, the linearity and saturation limit to 1060 nm light are also significantly increased by applying external strains. The photodiode is illuminated with different wavelength lights to selectively choose the photogenerated charge carriers (either electrons or holes) passing through the depletion region, to investigate the piezo‐phototronic effect on electron or hole transport separately for the first time. This is essential for studying the basic principles in order to develop a full understanding about piezotronics and it also enables the development of the better performance of optoelectronics.

How to cite this publication

Haiyang Zou, Xiaogan Li, Wenbo Peng, Wenzhuo Wu, Ruomeng Yu, Changsheng Wu, Wenbo Ding, Fei Hu, Ruiyuan Liu, Yunlong Zi, Zhong Lin Wang (2017). Piezo‐Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis–NIR Broadband Photodiode. , 29(29), DOI: https://doi.org/10.1002/adma.201701412.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

11

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/adma.201701412

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access