0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessStrain-gated flexible optoelectronics are reported based on monolayer MoS2 . Utilizing the piezoelectric polarization created at the metal-MoS2 interface to modulate the separation/transport of photogenerated carriers, the piezophototronic effect is applied to implement atomic-layer-thick phototransistor. Coupling between piezoelectricity and photogenerated carriers may enable the development of novel optoelectronics.
Wenzhuo Wu, Lei Wang, Ruomeng Yu, Yuanyue Liu, Su‐Huai Wei, James Hone, Zhong Lin Wang (2016). Piezophototronic Effect in Single‐Atomic‐Layer MoS<sub>2</sub> for Strain‐Gated Flexible Optoelectronics. , 28(38), DOI: https://doi.org/10.1002/adma.201602854.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adma.201602854
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access