0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The biophysical characteristics of the extracellular matrix, such as nanotopography and bioelectricity, have a profound influence on cell proliferation, adhesion, differentiation, etc. Recognition of the function of a certain biophysical cue and fabrication of biomaterial scaffolds with specific properties would have important implications and significant applications in tissue engineering. Herein, nanotopographic and piezoelectric biomaterials are fabricated and the combination effect of and individual contribution to proliferation, adhesion, and neuron‐like differentiation of rat bone marrow‐derived mesenchymal stem cells (rbMSCs) are clarified via nanotopography and piezoelectricity. Piezoelectric polyvinylidene fluoride with nanostripe array structures is fabricated, which can generate a surface piezoelectric potential up to millivolt by cell movement and traction. The results reveal a more favorable effect on neuron‐like differentiation of rbMSCs from the combination of piezoelectricity and nanotopography rather than nanotopography alone, whereas nanotopography can increase cellular adhesion. This research provides a new insight into designing biomaterials for the potential application in neural tissue engineering.
Xiaodi Zhang, Xin Cui, Diancan Wang, Shu Wang, Zhirong Liu, Gengrui Zhao, Yan Zhang, Zhou Li, Zhong Lin Wang, Linlin Li (2019). Piezoelectric Nanotopography Induced Neuron‐Like Differentiation of Stem Cells. , 29(22), DOI: https://doi.org/10.1002/adfm.201900372.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201900372
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access