0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLight is often considered the primary factor leading to the regeneration failure of Korean pines (Pinus koraiensis) under the forest canopy. However, studies on the effect of light on Korean pines mainly focus on the use of an artificial sunshade net to control shade; field studies on the canopy are extremely scarce, and the current experimental results are contradictory. For a deeper understanding of the relationship between light conditions and understory Korean pine trees, the conditions of low, middle, high and full light (control) under the forest were tested at 18 years of age. The photosynthetic pigments, chlorophyll fluorescence, non-structural carbohydrate metabolism, antioxidant enzyme activity, and nutrient concentrations of current-year needles from Korean pine trees were measured. From June to September, light intensity and quality decreased under full light, but following leaf fall, understory light conditions improved slightly. As the light conditions improved, the photosynthetic pigments in the needles decreased, but Car/Chl were highest in the needles under full light. All light conditions had a positive correlation with glucose concentrations and Rubisco activity. Full-light needles had the highest APX activity, DPPH scavenging capacity, and proline concentration, as well as higher NPQ and lower Fv/Fm readings. This indicated that full-light Korean pine trees were stressed and inhibited photosynthesis to some extent, while the understory light environment may alleviate stress. The conservative strategy of storing more starch and using less glucose in understory Korean pine trees may be one of the reasons for the observed differences in growth rates among Korean pine trees under varying light conditions. Overall, this study implies that understory light during the growing season is not always unfavorable to 18-year-old Korean pine trees; this means that 18-year-old Korean pine trees still have shade tolerance to some extent and are capable of living under a canopy of deciduous trees.
Wenkai Li, Bei Li, Xiao Ma, Sudipta Saha, Haibo Wu, Peng Zhang, Hailong Shen (2023). Physiological and Biochemical Traits of Needles Imply That Understory Light Conditions in the Growing Season May Be Favorable to Pinus koraiensis Trees. , 14(7), DOI: https://doi.org/10.3390/f14071333.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/f14071333
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access