0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIron oxides affect the stability of soil organic matter (SOM), which in turn affects greenhouse gas emissions in paddy soils. They also regulate the direction and magnitude of the rhizosphere priming effect (RPE) by restricting SOM accessibility and microbial activity. However, the controlling steps and key factors that regulate the RPE magnitude under anoxic conditions are unknown. In this study, we investigated the mechanisms through which Fe(III) reduction affects the RPE using humic acid as an electron shuttle in paddy soils and conducting continuous 13CO2 labeling of rice plants. The RPE, measured via CO2 emission, was approximately 25 % greater in soils with humic acid than in soils without. A rapid increase in the RPE of CH4 emissions after 41 days was attenuated in soils containing humic acid. Root growth and Fe(III) reduction stimulated the total primed CO2 emissions from the rhizosphere independent of the microbial biomass and enzyme activities. Humic acid accelerated Fe(III) reduction, leading to a decrease in Fe-bound organic carbon and an increase in RPE (CO2 emissions). The rhizosphere-primed CO2 emissions decreased with increasing amounts of reactive Fe(III) (oxyhydr)oxides, which protected the SOM from microbial and enzymatic attacks. Biochemical Fe(III) reduction and physical aggregate destruction controlled the abiotic transformation of inaccessible SOM into bioavailable organic carbon, thereby regulating the RPE. The results suggest that the reduction of reactive Fe(III) minerals is the rate-limiting step in the release of the physicochemically protected SOM, which in turn determines the magnitude of rhizosphere priming in paddy soils.
Cuiyan Wu, Wei Huang, Yixian Liu, Han Li, Shuai Ding, Zhenke Zhu, Feng Wang, Feike A. Dijkstra, Guangbin Zhang, Yakov Kuzyakov, Weiguo Cheng, Mouliang Xiao, Tida Ge (2024). Physicochemically protected organic carbon release is the rate-limiting step of rhizosphere priming in paddy soils. The Science of The Total Environment, pp. 176859-176859, DOI: 10.1016/j.scitotenv.2024.176859.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
13
Datasets
0
Total Files
0
Language
English
Journal
The Science of The Total Environment
DOI
10.1016/j.scitotenv.2024.176859
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access