0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNitrogen oxides (NOx = NO + NO2) are important atmospheric pollutants that are directly harmful to human health. Recently in urban and industrial areas, synthetic materials have been developed and deployed to photocatalytically oxidize NOx to nitrate (NO3-) in order to improve air quality. We show that the natural presence of small amounts (≤5%) of titanium oxides, such as anatase and rutile, can also drive NOx oxidation to nitrate in soils under UV-visible irradiation. The NO uptake coefficients ranged between 0.1 × 10-6 for sandy soils to 6.4 × 10-5 in the case of tropical clay soils; the latter comparable in efficiency to current industrial man-made catalysts. This photocatalytic N-fixation mechanism offers a new strategy for NOx mitigation from the atmosphere by transforming it into nitrate, and simultaneously provides an energy efficient source of essential fertilizer to agriculture.
Antonio Rafael Sánchez‐Rodríguez, E. Álvarez, José María Méndez, Ute Skiba, Davey L Jones, D. R. Chadwick, María Carmen del Campillo, Raphael BA. Fernandes, Jörg Kleffmann, Vidal Barrón (2023). Photocatalytic fixation of NOx in soils. Chemosphere, 338, pp. 139576-139576, DOI: 10.1016/j.chemosphere.2023.139576.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Chemosphere
DOI
10.1016/j.chemosphere.2023.139576
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access