RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Photocatalysis in agricultural soils: Mineralogy and soil properties control the fixation and emission of NOx and other trace gases of N

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2023

Photocatalysis in agricultural soils: Mineralogy and soil properties control the fixation and emission of NOx and other trace gases of N

0 Datasets

0 Files

English
2023
DOI: 10.5194/egusphere-egu23-1139

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Davey L Jones
Davey L Jones

Bangor University

Verified
Antonio Rafael Sánchez‐Rodríguez
E. Álvarez
Jose María Méndez
+7 more

Abstract

Trace gases of nitrogen (N), such as NOx (nitric oxide, NO + nitrogen dioxide, NO2) have a negative impact on human health and the environment. Although NOx are naturally produced in volcanic eruptions, forest fires and biotic nitrification and denitrification in soils, human activity is a major source of these contaminants via e.g. the combustion of fossil fuels. Additionally, N fertilization in agricultural soils is also an important source of NOx emissions. These emissions involve a loss of soil N to the atmosphere and have a negative impact in air quality. The abiotic part of the N cycle in terrestrial ecosystems has not received as much attention as the biotic part and certain abiotic reactions could play a key role in regulating NOx emissions. Photocatalysis is an example as this is used to abate NOx gases in urban and industrial areas. This reaction requires the presence of a catalyst (e.g. titanium oxide), oxygen, water, and energy from the sun (UV-visible light) to transform NO from the atmosphere into innocuous inorganic N forms (mainly nitrate, NO3-). There is a continuous investment in the production of catalysts by the industry. However, a variety of soil minerals such as anatase or rutile (titanium oxides), hematite and goethite (iron oxides), are found in soils and they could act as catalysts; however, the occurrence of photocatalysis in soils has not been evaluated so far. In this study, we assess (i) the potential of a selection of soils with different mineralogy and a wide variety of soil properties to fix or emit NOx through photocatalysis, and (ii) the possible alterations in the fixation or emission of other N gases from the soil, i.e., nitrous oxide (N2O) and ammonia (NH3), when photocatalysis is induced. Around thirty agricultural soils were selected to meet the first objective and irradiated for 1 hour with UV-visible light under a constant flux of air and NO (100 ppm). Similar experiments were carried out with a selection of soils, whose potential to fix NO was different and tested in the previous experiment, to satisfy the second objective. However, only air (without NO) was pumped within the soil chamber in this case and the soils were previously fertilized with different N fertilisers (urea or KNO3-) and rates (0 to 250 mg N kg-1 soil). Our experiments show that weathered soils (with a high content in titanium and iron oxides) were able to fix more atmospheric NO through photocatalysis (objective i), and that NO and NH3 fixation and emissions after N fertilization depended not only on the N fertilizer and rate but also on soil properties, mainly soil pH and N content (objective ii). Soil mineralogy and properties play a key role in soil photocatalysis, and this abiotic reaction should be considered in order to design more sustainable strategies for agriculture.

How to cite this publication

Antonio Rafael Sánchez‐Rodríguez, E. Álvarez, Jose María Méndez, Ute Skiba, Davey L Jones, D. R. Chadwick, María Carmen del Campillo, Raphael BA Fernandes, Jörg Kleffmann, Vidal Barrón (2023). Photocatalysis in agricultural soils: Mineralogy and soil properties control the fixation and emission of NOx and other trace gases of N. , DOI: 10.5194/egusphere-egu23-1139.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2023

Authors

10

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu23-1139

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access