0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIt is a challenge to non-invasively visualize in vivo the neovascularization in a three-dimensional (3D) scaffold with high spatial resolution and deep penetration depth. Here we used photoacoustic microscopy (PAM) to chronically monitor neovascularization in an inverse opal scaffold implanted in a mouse model for up to six weeks. The neovasculature was observed to develop gradually in the same mouse. These blood vessels not only grew on top of the implanted scaffold but also penetrated into the scaffold. The PAM system offered a lateral resolution of ~45 μm and a penetration depth of ~3 mm into the scaffold/tissue construct. By using the 3D PAM data, we further quantified the vessel area as a function of time.
Xin Cai, Yu Zhang, Li Li, Sung‐Wook Choi, Matthew R. MacEwan, Junjie Yao, Chulhong Kim, Younan Xia, Lihong V. Wang (2013). Photoacoustic microscopy of neovascularization in three-dimensional porous scaffolds<i>in vivo</i>. , 8581, DOI: https://doi.org/10.1117/12.2005236.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1117/12.2005236
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access