0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil organic carbon (SOC) loss from intensive agriculture represents a major global concern. Consequently, strategies to improve soil management to mitigate or abate SOC losses and enhance carbon (C) sequestration are urgently needed. Nutrient availability, especially nitrogen (N) and phosphorus (P), regulates soil C cycling and storage. While N effects are well studied, less is known about how soil P status and different fertilizer types affects SOC dynamics. This laboratory incubation assessed how two common P fertilizers, diammonium phosphate (DAP) and single superphosphate (SSP), affected microbial activity and C immobilization in the zone of soil directly around the fertilizer granule (prillosphere) across three contrasting agricultural soils (Inceptisol, Vertisol, Alfisol). Soils were amended with DAP or SSP granules and C turnover assessed with 14C-labeled glycine, malic acid or glucose, alongside unfertilized controls. After three weeks, soil pH, electrical conductivity (EC), Olsen-P and microbial C use efficiency (CUE) were measured. DAP increased pH in the Inceptisol (acidic soil), while SSP decreased pH in all soils. Both fertilizers increased EC and Olsen-P, but SSP enhanced Olsen-P more than DAP. Cumulative 14CO2 emissions were 19–20 % higher with P fertilizers compared to the control, with DAP stimulating faster initial C mineralization rates than SSP, except in the Alfisol. P addition reduced microbial CUE by 23–34 % across all soils and substrates versus the unfertilized control. We ascribe this reduction in CUE to an alleviation of nutrient limitation or a fertilizer-induced osmotic stress. The co-addition of N either in DAP or glycine did not alter the P-induced CUE response suggesting that P was more important than N in regulating microbial CUE in these soils. We conclude that P fertilization increased short-term C turnover and may lead to reduced C storage in soil, however, further long-term (>1 year) research is needed to identify optimum P management strategies to minimize C losses in agricultural soils.
Antonio Rafael Sánchez‐Rodríguez, María Carmen del Campillo, J. Torrent, Emily C. Cooledge, David R. Chadwick, Davey L Jones (2024). Phosphorus fertilization promotes carbon cycling and negatively affects microbial carbon use efficiency in agricultural soils: Laboratory incubation experiments. Geoderma, 450, pp. 117038-117038, DOI: 10.1016/j.geoderma.2024.117038.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Geoderma
DOI
10.1016/j.geoderma.2024.117038
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access