RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Phosphorus enrichment mediates the responses of plant lignin and microbial necromass accumulation to nitrogen addition in subalpine forest soil

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Phosphorus enrichment mediates the responses of plant lignin and microbial necromass accumulation to nitrogen addition in subalpine forest soil

0 Datasets

0 Files

English
2025
Geoderma
Vol 458
DOI: 10.1016/j.geoderma.2025.117317

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Ruyi Luo
Yakov Kuzyakov
Xi Chen
+3 more

Abstract

It is widely recognized that increased nitrogen (N) and phosphorus (P) inputs play critical roles in plant carbon (C) inputs and microbial growth and activity, thereby profoundly affecting the composition and dynamics of soil organic C (SOC). However, whether and how plant- and microbial-derived C and their associated SOC fractions respond to the interaction between N and P additions remain unclear. Here, an 8-year N and P addition experiment was conducted in a subalpine forest on the eastern Tibetan Plateau. We used amino sugars and lignin phenols as biomarkers for quantifying microbial necromass and plant lignin components, respectively, and separated SOC into distinct functional C pools, such as particulate organic C (POC) and mineral-associated organic C (MAOC). The results revealed that N addition decreased the retention of lignin phenols in SOC without P input, whereas no significant changes occurred under N addition with P input. In contrast, N addition increased the microbial necromass contribution to SOC under no P input, whereas N addition effects were absent under P input. Regarding N addition alone, the decrease in plant lignin was likely associated with lower lignin inputs from the root litter, while the increase in microbial necromass was largely attributed to suppressed necromass decomposition via a reduction in N-acquisition enzyme activity. Moreover, the POC and MAOC pools and their ratios to SOC were insensitive to N addition, regardless of P input. Collectively, our findings provide novel insights into the importance of P availability in mediating N addition-induced accumulation of plant lignin and microbial necromass in subalpine forest soil, highlighting the necessity of incorporating the interaction between N and P additions on plant- and microbial-derived components into terrestrial C cycling models to improve the prediction of SOC dynamics and storage under future nutrient enrichment scenarios.

How to cite this publication

Ruyi Luo, Yakov Kuzyakov, Xi Chen, Wei Qiang, Yan Zhang, Ruyi Luo (2025). Phosphorus enrichment mediates the responses of plant lignin and microbial necromass accumulation to nitrogen addition in subalpine forest soil. Geoderma, 458, pp. 117317-117317, DOI: 10.1016/j.geoderma.2025.117317.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2025.117317

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access