0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessViruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1–4 days) reduced CO2 efflux rate by 13-21% at 18 °C and 3–30% at 23 °C but significantly (p < 0.05) increased by 4–29% at 18 °C and 9–41% at 23 °C after 6 days, raising cumulative CO2 emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a "cull-the-winner" dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as Pseudomonas, Anaerocolumna, and Caulobacter) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.
Xiaolei Zhao, Xiaolong Liang, Zhenke Zhu, Zhaofeng Yuan, Senxiang Yu, Yalong Liu, Jingkuan Wang, Kyle Mason‐Jones, Yakov Kuzyakov, Jianping Chen, Tida Ge, Shuang Wang (2025). Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities. Environmental Science & Technology, DOI: 10.1021/acs.est.4c08274.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
12
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science & Technology
DOI
10.1021/acs.est.4c08274
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access