0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDespite decades of research into the interactions between groundwater and seawater, the evolution of permeability produced by iron precipitation has received little attention, resulting in uncertain predictions of permeability in porous media. This study establishes a novel permeability–porosity model for estimating permeability considering the oxidative precipitation of Fe(II) in granular porous media. The accuracy of this model is validated by a series of sand column tests investigating iron precipitation driven by subsurface freshwater–saltwater mixing. The experiments showed a localized pattern of iron precipitation concentrated near the freshwater–saltwater interface in those columns, where a low-permeability zone with intensive precipitation was generated, subsequently leading to a decrease in sand permeability of 45%. Extracted samples analyzed by scanning electron microscopy showed quartz sand particles coated by iron precipitates. With those successful experiments, the newly developed model is validated and fully capable of estimating the sand permeability underlying this geochemical process, providing predictions to within an order of magnitude. The present experimental results and model predictions bring valuable insights into how the pore matrix of a granular porous media evolves during iron precipitation in the subsurface groundwater–seawater mixing zone.
Wenran Cao, Nike Hu, Guanxi Yan, Harald Hofmann, Alexander Scheuermann (2024). Permeability–porosity model considering oxidative precipitation of Fe(II) in granular porous media. Journal of Hydrology, 636, pp. 131346-131346, DOI: 10.1016/j.jhydrol.2024.131346.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hydrology
DOI
10.1016/j.jhydrol.2024.131346
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access