0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIntroduction Diverse combinations of built environment (BE) features for physical activity (PA) are understudied. This study explored whether patterns of GIS-derived BE features explained objective and self-reported PA, sedentary behavior, and BMI. Methods Neighborhood Quality of Life Study participants (N=2,199, aged 20–65 years, 48.2% female, 26% ethnic minority) were sampled in 2001–2005 from Seattle / King County WA and Baltimore MD / Washington DC regions. Their addresses were geocoded to compute net residential density, land use mix, retail floor area ratio, intersection density, public transit, and public park and private recreation facility densities using a 1-km network buffer. Latent profile analyses (LPAs) were estimated from these variables. Multilevel regression models compared profiles on accelerometer-measured moderate to vigorous PA (MVPA) and self-reported PA, adjusting for covariates and clustering. Analyses were conducted in 2013–2014. Results Seattle region LPAs yielded four profiles, including low walkability/transit/recreation (L-L-L); mean walkability/transit/recreation (M-M-M); moderately high walkability/transit/recreation (MH-MH-MH); and high walkability/transit/recreation (H-HH). All measures were higher in the HHH than the LLL profile (difference of 17.1 minutes/day for MVPA, 146.5 minutes/week for walking for transportation, 58.2 minutes/week for leisure-time PA, and 2.2 BMI points; all p<0.05). Baltimore region LPAs yielded four profiles, including L-L-L; M-M-M; high land use mix, transit, and recreation (HLU-HT-HRA); and high intersection density, high retail floor area ratio (HID-HRFAR). HLU-HT-HRA and L-L-L differed by 12.3 MVPA minutes/day; HID-HRFAR and L-L-L differed by 157.4 minutes/week for walking for transportation (all p<0.05). Conclusions Patterns of environmental features explain greater differences in adults’ PA than the four-component walkability index.
Marc A. Adams, Michael Todd, Jonathan Kurka, Terry L. Conway, Kelli L. Cain, Lawrence D. Frank, James Sallis (2015). Patterns of Walkability, Transit, and Recreation Environment for Physical Activity. American Journal of Preventive Medicine, 49(6), pp. 878-887, DOI: 10.1016/j.amepre.2015.05.024.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
American Journal of Preventive Medicine
DOI
10.1016/j.amepre.2015.05.024
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access