0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTo date, convolutional neural networks have played a dominant role in sensor-based human activity recognition (HAR) scenarios. In 2021, researchers from four institutions almost simultaneously released their newest work to arXiv.org, where each of them independently presented new network architectures mainly consisting of linear layers. This arouses a heated debate whether the current research hotspot in deep learning architectures is returning to MLPs. Inspired by the recent success achieved by MLPs, in this paper, we first propose a lightweight network architecture called all-MLP for HAR, which is entirely built on MLP layers with a gating unit. By dividing multi-channel sensor time series into nonoverlapping patches, all linear layers directly process sensor patches to automatically extract local features, which is able to effectively reduce computational cost. Compared with convolutional architectures, it takes fewer FLOPs and parameters but achieves comparable classification score on WISDM, OPPORTUNITY, PAMAP2 and USC-HAD HAR benchmarks. The additional benefit is that all involved computations are matrix multiplication, which can be readily optimized with popular deep learning libraries. This advantage can promote practical HAR deployment in wearable devices. Finally, we evaluate the actual operation of all-MLP model on a Raspberry Pi platform for real-world human activity recognition simulation. We conclude that the new architecture is not a simple reuse of traditional MLPs in HAR scenario, but is a significant advance over them.
Shuoyuan Wang, Lei Zhang, Xing Wang, Wenbo Huang, Hao Wu, Aiguo Song (2024). PatchHAR: A MLP-Like Architecture for Efficient Activity Recognition Using Wearables. , 6(2), DOI: https://doi.org/10.1109/tbiom.2024.3354261.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tbiom.2024.3354261
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access