RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Passive Shielding Design of an Inductive Power Transfer System for Railway Applications

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Passive Shielding Design of an Inductive Power Transfer System for Railway Applications

0 Datasets

0 Files

English
2022
DOI: 10.1109/itec53557.2022.9814018

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Shenen Chen
Shenen Chen

Institution not specified

Verified
Karl Lin
Xiwen Xu
Tiefu Zhao
+4 more

Abstract

In this paper, a proposed shielding design for the Inductive power transfer (IPT) system for railway applications to reduce the electromagnetic field leakage between the transmitter and the receiver coils is presented. For high power applications, a strong magnetic field generates through a large air gap, resulting in human body health and safety problems. To satisfy standard requirements, the reference level set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), a shielding design is proposed to limit EMF emission. To demonstrate the effect of the coil structure with a conductive material and different geometry of the shielding design, the distribution of the magnetic field density is simulated by using Ansys Maxwell. Results show that the proposed design considerably reduces the leakage magnetic field density around the IPT system and complies with the ICNIRP standard at a certain distance. Based on the analysis and results, the IPT system has been shielded with an aluminum plate horizontally with the appropriate size on the receiver side. A 5-kW IPT system is developed in this paper, with a novel W-I coupler design according to the constraints on locomotives. The prototype of the IPT system is developed to validate the proposed design, with an air gap of 5 inches and an 85kHz operating frequency [1].

How to cite this publication

Karl Lin, Xiwen Xu, Tiefu Zhao, Shenen Chen, Nicole Braxtan, Dave Cook, Derek Ward (2022). Passive Shielding Design of an Inductive Power Transfer System for Railway Applications. , pp. 606-610, DOI: 10.1109/itec53557.2022.9814018.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

English

DOI

10.1109/itec53557.2022.9814018

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access