0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Past environmental conditions in the Mediterranean Sea have been proposed as main drivers of the current patterns of distribution of genetic structure of the seagrass Posidonia oceanica , the foundation species of one of the most important ecosystems in the Mediterranean Sea. Yet, the location of cold climate refugia (persistence regions) for this species during the Last Glacial Maximum (LGM) is not clear, precluding the understanding of its biogeographical history. We used Ecological Niche Modelling together with existing phylogeographic data to locate Pleistocene refugia in the Mediterranean Sea and to develop a hypothetical past biogeographical distribution able to explain the genetic diversity presently found in P. oceanica meadows. To do that, we used an ensemble approach of six predictive algorithms and two Ocean General Circulation Models. The minimum SST in winter and the maximum SST in summer allowed us to hindcast the species range during the LGM. We found separate glacial refugia in each Mediterranean basin and in the Central region. Altogether, the results suggest that the Central region of the Mediterranean Sea was the most relevant cold climate refugium, supporting the hypothesis that long-term persistence there allowed the region to develop and retain its presently high proportion of the global genetic diversity of P. oceanica .
Rosa M. Chefaoui, Carlos M. Duarte, Ester Á. Serrão (2017). Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadows. , 7(1), DOI: https://doi.org/10.1038/s41598-017-03006-2.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1038/s41598-017-03006-2
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access