0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access<title>Abstract</title> The use of redox active metal oxides to support noble metals is critical in the design of highly-active CO oxidation catalysts for gas emissions control. Unfortunately, supports promoting the activity, such as CeO2, tend also to promote acute catalyst deactivation by turning highly-active metallic Pt clusters into less-active PtOx species, under practical reaction conditions (high-temperature and/or the excess of O2). This leads to a problematic activity/stability tradeoff where Pt/CeO2 catalysts, highly-active, and Pt on non-reducible supports, highly stable, are bookends. Herein, we report a method to trap Pt at V-shaped pockets/stepped sites of CeO2 that break this undesired correlation by showing both high activity and stability in the CO oxidation reaction. O2-aged catalysts are ~3-times more active than state-of-the-art Pt/CeO2 catalysts under steady reaction conditions, and ~40-times more active than best Pt@zeolite catalysts. XAS, CO-DRIFT, XPS, HAADF-STEM, and DFT are used to infer that the generation of low order metallic Pt clusters connected to two crystallographic planes of the support is key to inhibit (deactivating) re-oxidation paths of the metal, as a result of the high-energy required to form disordered/distorted PtOx ensembles at these positions. This new material allows, thus, to operate outside the commonly observed, limiting, activity/stability tradeoff.
Pedro Serna, Benjamin Bohigues, Sergio Rojas‐Buzo, Davide Salusso, Yu Xia, Avelino Avelino, Silvia Bordiga, Mercedes Boronat, Tom Willhammar, Manuel Moliner (2025). Overcoming Activity/Stability Tradeoffs in CO Oxidation Catalysis by Pt/CeO2. Research Square (Research Square), DOI: 10.21203/rs.3.rs-5616848/v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Research Square (Research Square)
DOI
10.21203/rs.3.rs-5616848/v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access