0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper considers the use of energy harvesters in delay-constrained point-to-point wireless communications, where the source transmits with power drawn periodically from a device that harvests energy from the environment. In particular, the source is assumed to transmit over a block-fading channel with a constant transmission rate. It is also assumed that the channel state information (CSI) is unknown at the source but perfectly known at the destination, and the energy harvesting process is deterministic and known a priori at the source. The optimal power allocation is studied to minimize the receiver outage probability over a finite horizon of N energy-harvesting periods, each of which contains M communication blocks with independent channel fading coefficients. Although the outage minimization problem is shown to be non-convex, the optimal power allocation solution is obtained by the proposed forward search algorithm, which corresponds to an on-off transmission scheme. Moreover, a threshold-based sub-optimal low-complexity power allocation algorithm is proposed, which is shown to be asymptotically optimal as M goes to infinity. Finally, numerical results are provided to validate our analysis.
Chuan Huang, Rui Zhang, Shuguang Cui (2012). Outage minimization in fading channels under energy harvesting constraints. , pp. 5788-5793, DOI: 10.1109/icc.2012.6364778.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
3
Datasets
0
Total Files
0
Language
English
DOI
10.1109/icc.2012.6364778
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access