RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. OsWRKY28 Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility in Rice

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

OsWRKY28 Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility in Rice

0 Datasets

0 Files

English
2018
Frontiers in Plant Science
Vol 9
DOI: 10.3389/fpls.2018.01330

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Fang-jie Zhao
Fang-jie Zhao

Nanjing Agricultural University

Verified
Peitong Wang
Xuan Xu
Zhong Tang
+3 more

Abstract

WRKYs are transcriptional factors involved in stress tolerance and development of plants. In the present study, we characterized OsWRKY28, a group IIa WRKY gene, in rice, because its expression was found to be upregulated by arsenate exposure in previous transcriptomic studies. Subcellular localization using YFP-OsWRKY28 fusion protein showed that the protein was localized in the nuclei. Transgenic rice plants expressing pOsWRKY28::GUS suggested that the gene was expressed in various tissues in the whole plant, with a strong expression in the root tips, lateral roots and reproductive organs. The expression of OsWRKY28 was markedly induced by arsenate and other oxidative stresses. In a hydroponic experiment, loss-of-function mutation in OsWRKY28 resulted in lower accumulation of arsenate and phosphate concentration in the shoots. The mutants showed altered root system architecture, with fewer lateral roots and shorter total root length than wild-type plants. In a soil pot experiment, the mutants produced lower grain yield than wild-type because of reduced fertility and smaller effective tiller numbers. Transcriptomic profiling using RNA-seq showed altered expression in the mutant of genes involved in the biosynthesis of phytohormones, especially jasmonic acid (JA). Exogenous JA treatments mimicked the phenotypes of the oswrky28 mutants with inhibited root elongation and decreased arsenate/phosphate translocation. Our results suggested that OsWRKY28 affected arsenate/phosphate accumulation, root development at the seedling stage and fertility at the reproductive stage possibly by influencing homeostasis of JA or other phytohormones.

How to cite this publication

Peitong Wang, Xuan Xu, Zhong Tang, Wenwen Zhang, Xin‐Yuan Huang, Fang-jie Zhao (2018). OsWRKY28 Regulates Phosphate and Arsenate Accumulation, Root System Architecture and Fertility in Rice. Frontiers in Plant Science, 9, DOI: 10.3389/fpls.2018.01330.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Frontiers in Plant Science

DOI

10.3389/fpls.2018.01330

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access