0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRice (Oryza sativa) is a major dietary source of arsenic (As) for the population consuming rice as their staple food. Rice grain contains both inorganic As and methylated As species, especially dimethyarsinate (DMA). DMA is highly mobile in long-distance translocation in plants, but the underlying mechanism remains unknown. In the present study, we showed that OsPTR7 (OsNPF8.1), a putative peptide transporter in rice, was permeable to DMA in Xenopus laevis oocytes. Transient expression of the OsPTR7-green fluorescent protein (GFP) in tobacco protoplasts showed that OsPTR7 was localized in the cell plasma membrane. Quantitative real-time PCR analysis showed that OsPTR7 was more highly expressed in the shoots than in the roots at the seedling stage. At the flowering and grain-filling stage, the OsPTR7 transcript was abundant in the leaves, node I and roots. Knockout or knockdown mutants of OsPTR7 had significantly decreased root to shoot translocation of DMA compared with wild-type plants and accumulated less As in the brown rice. In field-grown plants, DMA accounted for 35% of the total As in the brown rice of wild-type plants but was undetectable in the knockout mutant. Our study demonstrates that OsPTR7 is involved in the long-distance translocation of DMA and contributes to the accumulation of DMA in rice grain.
Zhong Tang, Yi Chen, Fei Chen, Yuchen Ji, Fang-jie Zhao (2017). OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain. Plant and Cell Physiology, 58(5), pp. 904-913, DOI: 10.1093/pcp/pcx029.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Plant and Cell Physiology
DOI
10.1093/pcp/pcx029
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access