0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil contamination with arsenic (As) can cause phytotoxicity and elevated As accumulation in rice grain. Here, we used a forward genetics approach to investigate the mechanism of arsenate (As(V)) tolerance and accumulation in rice. A rice mutant hypersensitive to As(V), but not to As(III), was isolated. Genomic resequencing and complementation tests were used to identify the causal gene. The function of the gene, its expression pattern and subcellular localization were characterized. OsHAC4 is the causal gene for the As(V)-hypersensitive phenotype. The gene encodes a rhodanase-like protein that shows As(V) reductase activity when expressed in Escherichia coli. OsHAC4 was highly expressed in roots and was induced by As(V). In OsHAC4pro-GUS transgenic plants, the gene was expressed exclusively in the root epidermis and exodermis. OsHAC4-eGFP was localized in the cytoplasm and the nucleus. Mutation in OsHAC4 resulted in decreased As(V) reduction in roots, decreased As(III) efflux to the external medium and markedly increased As accumulation in rice shoots. Overexpression of OsHAC4 increased As(V) tolerance and decreased As accumulation in rice plants. OsHAC4 is an As(V) reductase that is critical for As(V) detoxification and for the control of As accumulation in rice. As(V) reduction, followed by As(III) efflux, is an important mechanism of As(V) detoxification.
Jiming Xu, Shulin Shi, Lei Wang, Zhong Tang, Tingting Lv, Xinlu Zhu, Xiaomeng Ding, Yifeng Wang, Fang-jie Zhao, Zhongchang Wu (2017). OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist, 215(3), pp. 1090-1101, DOI: 10.1111/nph.14572.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
New Phytologist
DOI
10.1111/nph.14572
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access