RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Organic matter stability in forest-tundra soils after wildfire

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Organic matter stability in forest-tundra soils after wildfire

0 Datasets

0 Files

English
2024
CATENA
Vol 243
DOI: 10.1016/j.catena.2024.108155

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Francisco J. Matus
Francisco J. Matus

Institution not specified

Verified
Ekaterina Filimonenko
Maria Uporova
Nikolai Prikhodko
+10 more

Abstract

Wildfires in the north circumpolar region are increasing in response to global warming and raised precipitation irregularity. Beside the short-time effects of wildfires on carbon (C) cycle by CO2 boost, the decreased amounts and availability of remaining organic matter slow down microbial decomposition over mid- and long-term. Our objective was to investigate the effects of low-intensity surface wildfire common in forest-tundra on soil organic matter (SOM) stability. We hypothesized that wildfire crucially increases organic matter stability due to pyrogenic C production, which reduces SOM availability to microorganisms. To prove this hypothesis, we analyzed SOM stability by thermal analysis (thermogravimetry and differential scanning calorimetry) combined with microbial respiration and assessed temperature sensitivity of SOM decomposition. Wildfire in forest-tundra decreased the thermal labile SOM pool by 1.6–1.9 times and increased the most stable SOM pool by 2.1 times in the O-horizon and 1.3 times in the mineral topsoil. Fire increased SOM thermal stability stronger in the O-horizon compared to the mineral topsoil. For the first time, we revealed the relationship between SOM thermal stability and microbial activity in Cryosols. The increased stability of SOM in Cryosols raised temperature sensitivity (Q10) of SOM decomposition by microorganisms, decreased microbial respiration (CO2 efflux) and microbial biomass content. Concluding, wildfires have strong effects on soil and microbial properties, leaving predominantly stable organic matter pools, which are less available for microorganisms.

How to cite this publication

Ekaterina Filimonenko, Maria Uporova, Nikolai Prikhodko, Nataliya Samokhina, Alexandra Belyanovskaya, I. N. Kurganova, Valentin Lopes de Gerenyu, Carolina Merino, Francisco J. Matus, Chengrong Chen, Sulaiman Almwarai Alharbi, Andrey Soromotin, Yakov Kuzyakov (2024). Organic matter stability in forest-tundra soils after wildfire. CATENA, 243, pp. 108155-108155, DOI: 10.1016/j.catena.2024.108155.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

13

Datasets

0

Total Files

0

Language

English

Journal

CATENA

DOI

10.1016/j.catena.2024.108155

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access