RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Organic fertilizers incorporation increased microbial necromass accumulation more than mineral fertilization in paddy soil via altering microbial traits

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Organic fertilizers incorporation increased microbial necromass accumulation more than mineral fertilization in paddy soil via altering microbial traits

0 Datasets

0 Files

English
2023
Applied Soil Ecology
Vol 193
DOI: 10.1016/j.apsoil.2023.105137

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Zhe Li
Xiaomeng Wei
Zhenke Zhu
+8 more

Abstract

Long-term fertilization is considered as the most effective practice in organic C accrual in intensively managed paddy soils. However, the contribution and mechanism of microbial necromass C for soil organic C accrual, and the effective incremental component in paddy soils under the different fertilization remain unclear. To address the knowledge gap, we collected soils from a 31-year long-term fertilization paddy field including no fertilization (control), mineral fertilizers alone (NPK), mineral fertilizers plus rice straw incorporation (NPK + S), and mineral fertilizers plus manure incorporation (NPK + M). Living microbial biomass and their necromass were quantified by the biomarker analysis of phospholipid fatty acids and amino sugars, respectively. Results showed that the three fertilization treatments significantly increased the bacterial and fungal biomass in both 0–10 and 10–20 cm layers, which were universally greatest in NPK + M. The microbial necromass C was little affected by 31-year mineral fertilization; however, mineral combined organic fertilizers incorporation greatly stimulated microbial necromass C accumulation. Besides, soil treated with NPK + M showed 3.55 ± 0.12 g kg−1 higher accumulation of microbial necromass C than NPK + S, because manure application increased the abundance of Gram-positive r-strategy bacteria (mainly Firmicutes and Actinobacteria), and enriched filamentous fungi (Ascomycota). Compared to the control, the increase in the microbial necromass C contribution to SOC was lowest in NPK and highest in NPK + M, mainly derived from the variation in the contribution of bacterial necromass. Consequently, this study suggested long-term mineral combined manure application in subtropical paddy fields could effectively increase soil C sequestration by strengthening microbial necromass accumulation. Bacterial and fungal necromass C accrual was closely associated with living microbial biomass and their community structure. Given the C sequestration potential of manure in paddy soil, as the crucial resource of livestock and poultry waste in this region, it should be incorporated into subtropical agricultural ecosystems.

How to cite this publication

Zhe Li, Xiaomeng Wei, Zhenke Zhu, Yunying Fang, Hongzhao Yuan, Yuhong Li, Qihong Zhu, Xiaobin Guo, Jinshui Wu, Yakov Kuzyakov, Tida Ge (2023). Organic fertilizers incorporation increased microbial necromass accumulation more than mineral fertilization in paddy soil via altering microbial traits. Applied Soil Ecology, 193, pp. 105137-105137, DOI: 10.1016/j.apsoil.2023.105137.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Applied Soil Ecology

DOI

10.1016/j.apsoil.2023.105137

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access