0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessExudation of organic acids has been hypothesized to greatly improve the ability of plants to establish on nutrient poor soils such as those found in calcareous environments. An understanding of the behaviour of organic acids in these soils is crucial to the critical assessment of their potential capacity for nutrient mobilization. The aim of this study was therefore to study the sorption reactions and mineralization potentials of three organic acids commonly found in root exudates of calcicole plants (citrate, malate and oxalate). Using maize as a model plant, we studied the root exudation of organic acids into a calcareous soil and assessed the organic acid biodegradation rate in rhizosphere and bulk soil. Our results indicate that malate and citrate are rapidly biodegraded in this calcareous soil, in agreement with previous studies presented for non-calcareous soils. In contrast, oxalate appears to be resistant to microbial degradation possibly due to substrate protection by the formation and precipitation of Ca-oxalate. The rate of malate biodegradation was significantly enhanced in rhizosphere soil relative to that in bulk soil possibly reflecting the high degree of efflux of this organic acid from maize roots. The levels of free organic acids in the soil solution of calcareous soil surrounding maize roots, whilst higher than in the bulk soil, were extremely low.
Lena Ström, A.G. Owen, Douglas L. Godbold, Davey L Jones (2001). Organic acid behaviour in a calcareous soil: sorption reactions and biodegradation rates. Soil Biology and Biochemistry, 33(15), pp. 2125-2133, DOI: 10.1016/s0038-0717(01)00146-8.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Soil Biology and Biochemistry
DOI
10.1016/s0038-0717(01)00146-8
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access