RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Optimal Power and Range Adaptation for Green Broadcasting

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2013

Optimal Power and Range Adaptation for Green Broadcasting

0 Datasets

0 Files

English
2013
IEEE Transactions on Wireless Communications
Vol 12 (9)
DOI: 10.1109/twc.2013.080113.121874

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Shixin Luo
Rui Zhang
Teng Joon Lim

Abstract

Improving energy efficiency is key to network providers maintaining profit levels and an acceptable carbon footprint in the face of rapidly increasing data traffic in cellular networks in the coming years. The energy-saving concept studied in this paper is the adaptation of a base station's (BS's) transmit power levels and coverage area according to channel conditions and traffic load. Cell coverage is usually pre-designed based on the estimated static (e.g. peak) traffic load. However, traffic load in cellular networks exhibits significant fluctuations in both space and time, which can be exploited, through cell range adaptation, for energy saving. In this paper, we design short- and long-term BS power control (STPC and LTPC respectively) policies for the OFDMA-based downlink of a single-cell system, where bandwidth is dynamically and equally shared among a random number of mobile users (MUs). STPC is a function of all MUs' channel gains that maintains the required user-level quality of service (QoS), while LTPC (including BS on-off control) is a function of traffic density that minimizes the long-term energy consumption at the BS under a minimum throughput constraint. We first develop a power scaling law that relates the (short-term) average transmit power at BS with the given cell range and MU density. Based on this result, we derive the optimal (long-term) transmit adaptation policy by considering a joint range adaptation and LTPC problem. By identifying the fact that energy saving at BS essentially comes from two major energy saving mechanisms (ESMs), i.e. range adaptation and BS on-off power control, we propose low-complexity suboptimal schemes with various combinations of the two ESMs to investigate their impacts on system energy consumption. It is shown that when the network throughput is low, BS on-off power control is the most effective ESM, while when the network throughput is higher, range adaptation becomes more effective.

How to cite this publication

Shixin Luo, Rui Zhang, Teng Joon Lim (2013). Optimal Power and Range Adaptation for Green Broadcasting. IEEE Transactions on Wireless Communications, 12(9), pp. 4592-4603, DOI: 10.1109/twc.2013.080113.121874.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Wireless Communications

DOI

10.1109/twc.2013.080113.121874

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access