0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, we consider the two-way relay network (TWRN) where two terminals exchange their information through a relay node in a bi-directional manner and study the training-based channel estimation under the amplify-and-forward (AF) relay scheme. We propose a two-phase training protocol for channel estimation: in the first phase, the two terminals send their training signals concurrently to the relay; and in the second phase, the relay amplifies the received signal and broadcasts it to both terminals. Each terminal then estimates the channel parameters required for data detection. First, we assume the channel parameters to be deterministic and derive the maximum-likelihood (ML) -based estimator. It is seen that the newly derived ML estimator is nonlinear and differs from the conventional least-square (LS) estimator. Due to the difficulty in obtaining a closed-form expression of the mean square error (MSE) for the ML estimator, we resort to the Crameacuter-Rao lower bound (CRLB) on the estimation MSE for design of optimal training sequence. Secondly, we consider stochastic channels and focus on the class of linear estimators. In contrast to the conventional linear minimum-mean-square-error (LMMSE) -based estimator, we introduce a new type of estimator that aims at maximizing the effective receive signal-to-noise ratio (SNR) after taking into consideration the channel estimation errors, thus referred to as the linear maximum SNR (LMSNR) estimator. Furthermore, we prove that orthogonal training design is optimal for both the CRLB- and the LMSNR-based design criteria. Finally, simulations are conducted to corroborate the proposed studies.
Feifei Gao, Rui Zhang, Ying‐Chang Liang (2009). Optimal channel estimation and training design for two-way relay networks. IEEE Transactions on Communications, 57(10), pp. 3024-3033, DOI: 10.1109/tcomm.2009.10.080169.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Communications
DOI
10.1109/tcomm.2009.10.080169
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access