0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOptical intelligent reflecting surface (OIRS) offers a new and effective approach to resolving the line-of-sight blockage issue in visible light communication (VLC) by enabling redirection of light to bypass obstacles, thereby dramatically enhancing indoor VLC coverage and reliability. This article provides a comprehensive overview of OIRS for VLC, including channel modeling, design techniques, and open issues. First, we present the characteristics of OIRS-reflected channels and introduce two practical models, namely, optics model and association model, which are then compared in terms of applicable conditions, configuration methods, and channel parameters. Next, under the more practically appealing association model, we discuss the main design techniques for OIRS-aided VLC systems, including beam alignment, channel estimation, and OIRS reflection optimization. Finally, open issues are identified to stimulate future research in this area.
Shiyuan Sun, Fang Yang, Weidong Mei, Jian Song, Zhu Han, Rui Zhang (2024). Optical IRS for Visible Light Communication: Modeling, Design, and Open Issues. arXiv (Cornell University), DOI: 10.48550/arxiv.2405.18844.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2405.18844
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access