0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe design of energy-efficient mechanisms is one of the key challenges in emerging wireless small cell networks. In this paper, a novel approach for opportunistically switching ON/OFF base stations to improve the energy efficiency in wireless small cell networks is proposed. The proposed approach enables the small cell base stations to optimize their downlink performance while balancing the load among each another, while satisfying their users' quality-of-service requirements. The problem is formulated as a noncooperative game among the base stations that seek to minimize a cost function which captures the tradeoff between energy expenditure and load. To solve this game, a distributed learning algorithm is proposed using which the base stations autonomously choose their optimal transmission strategies. Simulation results show that the proposed approach yields significant performance gains in terms of reduced energy expenditures up to 23% and reduced load up to 40% compared to conventional approaches.
Sumudu Samarakoon, Mehdi Bennis, Walid Saad, Matti Latva-aho (2014). Opportunistic sleep mode strategies in wireless small cell networks. , pp. 2707-2712, DOI: 10.1109/icc.2014.6883733.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
DOI
10.1109/icc.2014.6883733
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access