0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe rational design and implementation of a one-pot method is reported for the facile synthesis of Pd@PtnL (nL denotes the number of Pt atomic layers) core-shell icosahedral nanocrystals in a single step. The success of this method relies on the use of Na2 PdCl4 and Pt(acac)2 as the precursors to Pd and Pt atoms, respectively. Our quantitative analysis of the reduction kinetics indicates that the PdII and PtII precursors are sequentially reduced with a major gap between the two events. Specifically, the PdII precursor is reduced first, leading to the formation of Pd-based icosahedral seeds with a multiply-twinned structure. In contrast, the PtII precursor prefers to take a surface reduction pathway on the just-formed icosahedral seeds. As such, the otherwise extremely slow reduction of the PtII precursor can be dramatically accelerated through an autocatalytic process for the deposition of Pt atoms as a conformal shell on each Pd icosahedral core. Compared to the conventional approach of seed-mediated growth, the throughput for the one-pot synthesis of Pd@PtnL core-shell nanocrystals can be increased by more than 30-fold. When used as catalysts, the Pd@Pt4.5L core-shell icosahedral nanocrystals show specific and mass activities of 0.83 mA cm-2 and 0.39 A mgPt-1 , respectively, at 0.9 V toward oxygen reduction. The Pt-based nanocages derived from the core-shell nanocrystals also show enhanced specific (1.45 mA cm-2 ) and mass activities (0.75 A mgPt-1 ) at 0.9 V, which are 3.8 and 3.3 times greater than those of the commercial Pt/C, respectively.
Chi‐Ta Lee, Helan Wang, Ming Zhao, Tung‐Han Yang, Madeline Vara, Younan Xia (2019). One‐Pot Synthesis of Pd@Pt<sub><i>n</i>L</sub> Core‐Shell Icosahedral Nanocrystals in High Throughput through a Quantitative Analysis of the Reduction Kinetics. , 25(20), DOI: https://doi.org/10.1002/chem.201900229.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/chem.201900229
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access