RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. One‐Pot Polyol Synthesis and Scalable Production of Rh−Pd Alloy Nanorods with Tunable Compositions

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

One‐Pot Polyol Synthesis and Scalable Production of Rh−Pd Alloy Nanorods with Tunable Compositions

0 Datasets

0 Files

en
2023
Vol 9 (12)
Vol. 9
DOI: 10.1002/cnma.202300290

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Ming Zhou
Chenxiao Wang
Helan Wang
+1 more

Abstract

Abstract Combining different precious metals to generate alloy nanocrystals with desirable shapes and compositions remains a challenge because of the low miscibility between these metals and/or the different reduction potentials of their salt precursors. Specifically, Rh and Pd are considered to be immiscible in the bulk solid over the entire composition range. Here we demonstrate that Rh−Pd alloy nanorods with well‐distributed and tunable compositions can be synthesized using a one‐pot polyol method. The success of our synthesis relies on the introduction of bromide as a coordination ligand to tune the redox potentials of Rh(III) and Pd(II) ions for the achievement of co‐reduction. The atomic ratio of the Rh−Pd alloy nanorods can be facilely tuned by changing the molar feeding ratio between the two precursors. We also systematically investigate the effects of water on the morphology of the Rh−Pd alloy nanocrystals. In an attempt to promote future use of these alloy nanorods, we successfully scale up their synthesis in a continuous‐flow reactor with no degradation to the product quality.

How to cite this publication

Ming Zhou, Chenxiao Wang, Helan Wang, Younan Xia (2023). One‐Pot Polyol Synthesis and Scalable Production of Rh−Pd Alloy Nanorods with Tunable Compositions. , 9(12), DOI: https://doi.org/10.1002/cnma.202300290.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/cnma.202300290

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access