0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe report the one-pot synthesis of a chabazite (CHA)/erionite (ERI)-type zeolite intergrowth structure characterized by adjustable extents of intergrowth enrichment and Si/Al molar ratios. This method utilizes readily synthesizable 6-azaspiro[5.6]dodecan-6-ium as the exclusive organic structure-directing agent (OSDA) within a potassium-dominant environment. High-throughput simulations were used to accurately determine the templating energy and molecular shape, facilitating the selection of an optimally biselective OSDA from among thousands of prospective candidates. The coexistence of the crystal phases, forming a distinct structure comprising disk-like CHA regions bridged by ERI-rich pillars, was corroborated via rigorous powder X-ray diffraction and integrated differential-phase contrast scanning transmission electron microscopy (iDPC S/TEM) analyses. iDPC S/TEM imaging further revealed the presence of single offretite layers dispersed within the ERI phase. The ratio of crystal phases between CHA and ERI in this type of intergrowth could be varied systematically by changing both the OSDA/Si and K/Si ratios. Two intergrown zeolite samples with different Si/Al molar ratios were tested for the selective catalytic reduction (SCR) of NOx with NH3, showing competitive catalytic performance and hydrothermal stability compared to that of the industry-standard commercial NH3-SCR catalyst, Cu-SSZ-13, prevalent in automotive applications. Collectively, this work underscores the potential of our approach for the synthesis and optimization of adjustable intergrown zeolite structures, offering competitive alternatives for key industrial processes.
Soonhyoung Kwon, Estefanía Bello‐Jurado, Evgeniia Ikonnikova, Hwajun Lee, Daniel Schwalbe‐Koda, Avelino Avelino, Tom Willhammar, Elsa Olivetti, Rafael Gómez‐Bombarelli, Manuel Moliner, Yuriy Román‐Leshkov (2024). One-Pot Synthesis of CHA/ERI-Type Zeolite Intergrowth from a Single Multiselective Organic Structure-Directing Agent. ACS Applied Materials & Interfaces, 16(12), pp. 14661-14668, DOI: 10.1021/acsami.3c15810.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
11
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Materials & Interfaces
DOI
10.1021/acsami.3c15810
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access