RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2013

On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals

0 Datasets

0 Files

en
2013
Vol 110 (17)
Vol. 110
DOI: 10.1073/pnas.1222109110

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Xiaohu Xia
Shuifen Xie
Maochang Liu
+5 more

Abstract

Controlling the shape or morphology of metal nanocrystals is central to the realization of their many applications in catalysis, plasmonics, and electronics. In one of the approaches, the metal nanocrystals are grown from seeds of certain crystallinity through the addition of atomic species. In this case, manipulating the rates at which the atomic species are added onto different crystallographic planes of a seed has been actively explored to control the growth pattern of a seed and thereby the shape or morphology taken by the final product. Upon deposition, however, the adsorbed atoms (adatoms) may not stay at the same sites where the depositions occur. Instead, they can migrate to other sites on the seed owing to the involvement of surface diffusion, and this could lead to unexpected deviations from a desired growth pathway. Herein, we demonstrated that the growth pathway of a seed is indeed determined by the ratio between the rates for atom deposition and surface diffusion. Our result suggests that surface diffusion needs to be taken into account when controlling the shape or morphology of metal nanocrystals.

How to cite this publication

Xiaohu Xia, Shuifen Xie, Maochang Liu, Hsin-Chieh Peng, Ning Lu, Jinguo Wang, Moon J. Kim, Younan Xia (2013). On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. , 110(17), DOI: https://doi.org/10.1073/pnas.1222109110.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1073/pnas.1222109110

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access