RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Numerical simulation of the synergistic effects of unwanted combustion enhancement by the C3H2F3Br and C2HF5 blends

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Numerical simulation of the synergistic effects of unwanted combustion enhancement by the C3H2F3Br and C2HF5 blends

0 Datasets

0 Files

English
2022
International Journal of Hydrogen Energy
Vol 48 (9)
DOI: 10.1016/j.ijhydene.2022.10.186

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Caihong Li
Long Shi
Xudong Cheng
+3 more

Abstract

Owing to the restriction of using Halon 1301 (CF3Br) for fire suppression, several alternatives to Halon 1301 have been developed, including C2HF5 (HFC-125), C3H2F3Br (2-BTP), and C6F12O (Novec1230). However, in the Federal Aviation Administration (FAA) Aerosol Can Explosion Test (FAA-ACET), it was found that these alternatives did not suppress lean flames at sub-inert concentrations, but promoted combustion, eventually leading to overpressure. Therefore, they have not been successfully applied in aircraft cargo compartments. Herein, different blend ratios of C3H2F3Br and C2HF5 were used to explore their inhibitory effects on combustion enhancement under lean combustion conditions. A chemical kinetic model was developed and validated using a one-dimensional free-propagation flame simulator. The laminar burning velocity predicted by the model was consistent with the experimental results. The adiabatic flame temperature and overall reaction rate were determined using thermodynamic equilibrium calculations and perfectly stirred reactor (PSR) simulations. By comparing the blend inhibitors with different blend ratios, it was found that the blend of C3H2F3Br and C2HF5 at blend ratios of 25/75 and 50/50 effectively reduced the total heat release and system reactivity. In addition, the blend inhibitor not only weakened the fuel properties of C2HF5, but also further enhanced the bromine-catalysed radical recombination cycle. Notably, a new reaction occurred when C3H2F3Br and C2HF5 were blended into the FAA-ACET chamber: Br + CHF2CF3 = HBr + CF3-CF2, indicating that the Br atoms promoted the decomposition of C2HF5.

How to cite this publication

Caihong Li, Long Shi, Xudong Cheng, Song Lu, Yuelei Pan, Heping Zhang (2022). Numerical simulation of the synergistic effects of unwanted combustion enhancement by the C3H2F3Br and C2HF5 blends. International Journal of Hydrogen Energy, 48(9), pp. 3678-3689, DOI: 10.1016/j.ijhydene.2022.10.186.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

International Journal of Hydrogen Energy

DOI

10.1016/j.ijhydene.2022.10.186

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access