RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Normal range CAG repeat size variations in the <i>HTT</i> gene are associated with an adverse lipoprotein profile partially mediated by body mass index

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Normal range CAG repeat size variations in the <i>HTT</i> gene are associated with an adverse lipoprotein profile partially mediated by body mass index

0 Datasets

0 Files

English
2023
Human Molecular Genetics
Vol 32 (10)
DOI: 10.1093/hmg/ddad020

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frits R. Rosendaal
Frits R. Rosendaal

Leiden University

Verified
Tariq Faquih
N. Ahmad Aziz
Sarah L. Gardiner
+9 more

Abstract

Tandem cytosine-adenine-guanine (CAG) repeat sizes of 36 or more in the huntingtin gene (HTT) cause Huntington's disease (HD). Apart from neuropsychiatric complications, the disease is also accompanied by metabolic dysregulation and weight loss, which contribute to a progressive functional decline. Recent studies also reported an association between repeats below the pathogenic threshold (<36) for HD and body mass index (BMI), suggesting that HTT repeat sizes in the non-pathogenic range are associated with metabolic dysregulation. In this study, we hypothesized that HTT repeat sizes < 36 are associated with metabolite levels, possibly mediated through reduced BMI. We pooled data from three European cohorts (n = 10 228) with genotyped HTT CAG repeat size and metabolomic measurements. All 145 metabolites were measured on the same targeted platform in all studies. Multilevel mixed-effects analysis using the CAG repeat size in HTT identified 67 repeat size metabolite associations. Overall, the metabolomic profile associated with larger CAG repeat sizes in HTT were unfavorable-similar to those of higher risk of coronary artery disease and type 2 diabetes-and included elevated levels of amino acids, fatty acids, low-density lipoprotein (LDL)-, very low-density lipoprotein- and intermediate density lipoprotein (IDL)-related metabolites while with decreased levels of very large high-density lipoprotein (HDL)-related metabolites. Furthermore, the associations of 50 metabolites, in particular, specific very large HDL-related metabolites, were mediated by lower BMI. However, no mediation effect was found for 17 metabolites related to LDL and IDL. In conclusion, our findings indicate that large non-pathogenic CAG repeat sizes in HTT are associated with an unfavorable metabolomic profile despite their association with a lower BMI.

How to cite this publication

Tariq Faquih, N. Ahmad Aziz, Sarah L. Gardiner, Ruifang Li‐Gao, Renée de Mutsert, Yuri Milaneschi, Stella Trompet, J. Wouter Jukema, Frits R. Rosendaal, Astrid van Hylckama Vlieg, Ko Willems van Dijk, Dennis O. Mook‐Kanamori (2023). Normal range CAG repeat size variations in the <i>HTT</i> gene are associated with an adverse lipoprotein profile partially mediated by body mass index. Human Molecular Genetics, 32(10), pp. 1741-1752, DOI: 10.1093/hmg/ddad020.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

12

Datasets

0

Total Files

0

Language

English

Journal

Human Molecular Genetics

DOI

10.1093/hmg/ddad020

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration