RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Non‐probabilistic Structural Damage Identification With Uncertainties by Phase Space–Based CNN

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

Non‐probabilistic Structural Damage Identification With Uncertainties by Phase Space–Based CNN

0 Datasets

0 Files

en
2025
Vol 2025 (1)
Vol. 2025
DOI: 10.1155/stc/5827324

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jun Li
Jun Li

Institution not specified

Verified
Yue Zhong
Jun Li
Hong Hao
+1 more

Abstract

Considering the critical role of uncertainties in structural damage detection, primarily arising from measurement errors and finite element model discrepancies, a nonprobabilistic approach based on interval analysis is proposed. This nonprobabilistic approach integrates phase space matrices with convolutional neural networks (CNNs) for damage identification. The compatibility of the phase space matrix data format with CNN allows for high sensitivity in detecting damage. Unlike probabilistic methods, this approach does not rely on specific probability distributions but considers the upper and lower bounds of uncertainties, making it highly applicable to real‐world applications. The proposed method employs the phase space matrix as the input for the CNN and the elemental stiffness parameter (ESP) as the output. When accounting for uncertainties, distinct networks are developed from the upper and lower bounds of the input phase space matrix. Both the undamaged state and the state under assessment are processed through these networks. The resulting outputs enable the computation of the possibility of damage existence (PoDE) and the damage measure index (DMI), which collectively provide a comprehensive assessment of the level and probability of damage. Validation using a numerical model and experimental data confirms the effectiveness of this method in accurately determining the location and level of damage while considering uncertainties.

How to cite this publication

Yue Zhong, Jun Li, Hong Hao, Ling Li (2025). Non‐probabilistic Structural Damage Identification With Uncertainties by Phase Space–Based CNN. , 2025(1), DOI: https://doi.org/10.1155/stc/5827324.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1155/stc/5827324

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access