0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMechanochemistry revolutionizes traditional reactions through mechanical stimulation, but its reaction efficiency is limited. Recent advancements in utilizing triboelectric charge from liquid-solid contact electrification (CE) have demonstrated significant potential in improving the reaction efficiency. However, its efficacy remains constrained by interfacial electrical double-layer screening in aqueous solutions. This study pioneered chemistry in nonaqueous systems via CE for catalysis and luminescence. Density functional theory simulations and experiments revealed varying electron transfer capabilities and chemoselectivity of CE across different solvents. Phenol degradation via CE in dimethyl sulfoxide (DMSO) exhibited a rate over 40 times faster than that of traditional mechano-driven chemistry. A more intuitive comparison revealed that CE degradation of phenol in DMSO exhibits a 30-fold rate improvement compared to deionized water, where the degradation remains incomplete. Luminol oxidation by radicals generated solely via CE in DMSO eliminates the dependence on traditional catalysts and side reactions, establishing a pure and simple system for investigating the reaction mechanisms. A high and stable luminescence characteristic was maintained for 3 months, enhancing the imaging accuracy and stability exponentially. This study underscores the impact of triboelectric charge on reaction efficiency and chemoselectivity, establishing a new paradigm in nonmetal catalysis, mechanoluminescence, and providing profound insights into reaction kinetics.
Jiajin Liu, Zhe Yang, Shaoxin Li, Yan Du, Z. Zhang, Jiajia Shao, Morten Willatzen, Zhong Lin Wang, Di Wei (2024). Nonaqueous Contact-Electro-Chemistry via Triboelectric Charge. , 146(46), DOI: https://doi.org/10.1021/jacs.4c09318.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.4c09318
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access