RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Nitrogen deposition in subtropical forest: effect on temperature sensitivity of soil organic matter

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
English
2022

Nitrogen deposition in subtropical forest: effect on temperature sensitivity of soil organic matter

0 Datasets

0 Files

English
2022
DOI: 10.5194/egusphere-egu22-12545

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Zhiming Guo
Wei Qiang
Bernard Ludwig
+2 more

Abstract

<p>An increase of nitrogen (N) deposition is predicted in the next 10 years by 50%, compared to the values observed 20 years ago. This, together with the increase of atmospheric temperatures can change the soil organic matter (SOM) to either stronger mineralization or offset effects can be observed, depending on the ecosystem, and initial characteristics of the soils at the sites. Thus, this experiment aimed to reveal the effect of N deposition on the temperature sensitivity of SOM from the P limit subtropical evergreen forest ecosystem. Soils were collected at the Heshan (HS) National Field Research Station of Forest Ecosystem located in Guangdong province, where an experiment with a complete randomized block design of N deposition or control was established in 2018 (100 kg N ha<sup>−1</sup> y<sup>−1</sup>, during 2.5 years). The soil (0-20 cm, four replicates for each treatment) was incubated at 3 temperatures of 15, 25, and 35 °C during 112 d at 60 % of WHC. During the incubation, soil CO<sub>2</sub> efflux was constantly monitored, and three destructive samplings were done (at 10, 69 days, and at the end of the experiment). The soil was analyzed for the dissolved organic C, microbial biomass, available N pool, substrate use efficiency (with <sup>14</sup>C-glucose), activities of C and P hydrolytic, and C oxidative enzymes, the content of microbial biomarkers, and functional gene abundances. The maximal mineralized SOC amount was found under 35 °C under N deposition and minimum at control 15 °C. The highest differences for the total CO<sub>2</sub> efflux were observed between N deposited and control plots at 35 °C (1.3 times), and smallest at 15 °C (0.8 times). Q<sub>10</sub> was higher for the temperature increase 15-25 °C (1.3 and 2.3 for the control and N, respectively) than for the 25-35 °C (1.16 and 1.6), and for the soil experienced N deposition. Microbial biomass was affected by both, N treatment and temperature. SUE was the highest at 15 °C in the middle of the incubation under N deposition, whereas no differences were found at the other sampling points or treatments. Activities of acid phosphatase decreased with the incubation for all temperatures, whereas b-glucosidase and xylanase had maximum in the middle of the incubation; all hydrolytic decreased activities by the end of the incubation under N treatment. Both oxidases were higher under N deposition than in control during the entire experiment, with the maximum found under 35 °C. Polyphenol oxidase activity increased at 35 °C with the incubation in both control and N deposition, however stayed constant for the other temperature treatments. In contrast, peroxidase activity was the same between the sampling times. Thus, the effect of N deposition on the activity of microbial biomass, expressed in SOM mineralization, appeared more clearly with the incubation temperature. Despite that, the complex of soil enzymes reacted differently to the studied impacts, with oxidative enzymes being more vulnerable than oxidative ones.</p>

How to cite this publication

Zhiming Guo, Wei Qiang, Bernard Ludwig, Yakov Kuzyakov, Anna Gunina (2022). Nitrogen deposition in subtropical forest: effect on temperature sensitivity of soil organic matter. , DOI: 10.5194/egusphere-egu22-12545.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

DOI

10.5194/egusphere-egu22-12545

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access